
Roxy Mathew Koll Centre for Climate Change Research Indian Institute of Tropical Meteorology Ministry of Earth Sciences, India

CLIMATE CHANGE | Extreme Weather Events

CLIMATE DATA

भारतसरकार

Government of India

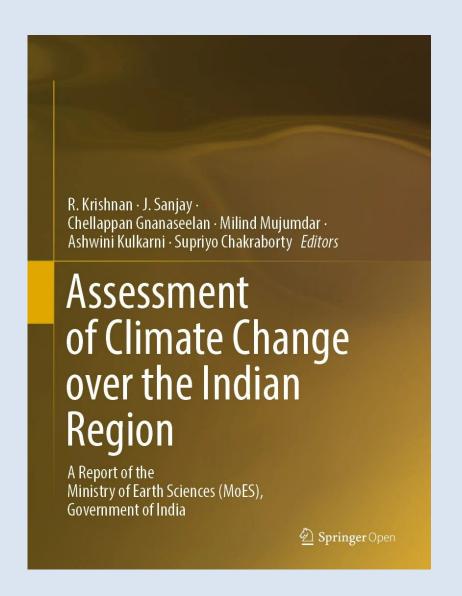
पृथ्वीविज्ञानमंत्रालय(एम. ओ. ई. एस.)

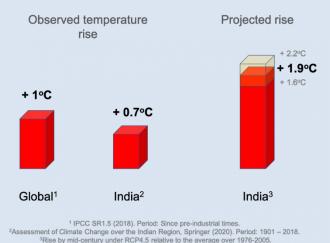
Ministry of Earth Sciences (MoES)

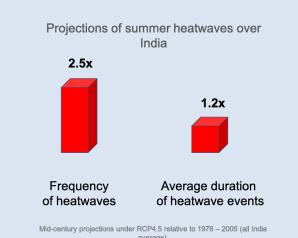
भारतमौसमविज्ञानविभाग

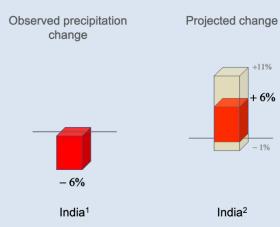
INDIA METEOROLOGICAL DEPARTMENT Climate Research and Services (CRS)

Statement on Climate of India during 2022


High Impact Weather Events occurred during 2022 along with loss of life reported by media and other state government agencies

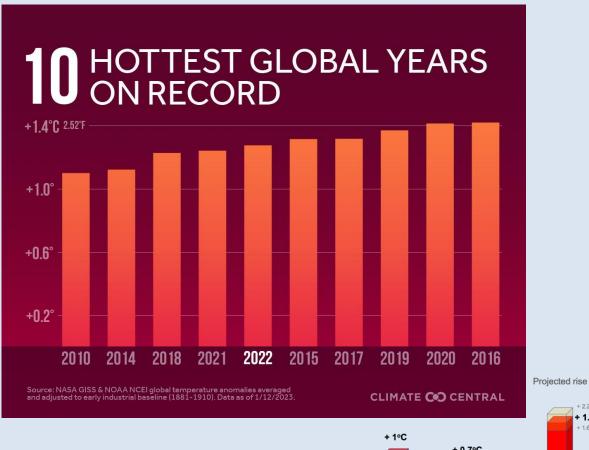

CLIMATE CHANGE | Extreme Weather Events





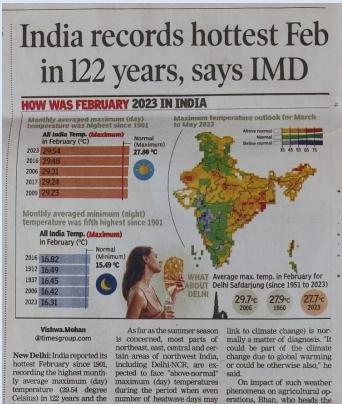
CLIMATE DATA

¹ Assessment of Climate Change over the Indian Region, Springer (2020). Period: 1950 –


² Rise by mid-century under RCP4.5 relative to the average over 1976-2005

CLIMATE DATA

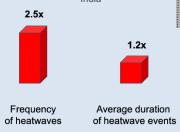
Top 10 hottest years are all after 2010


+ 1°C + 1.6°C + 1.6°C

Global¹ India² India³

²Assessment of Climate Change over the Indian Region, Springer (2020). Period: 1901 – 2018.

Rise by mid-century under RCP4,5 relative to the average over 1976-2005.

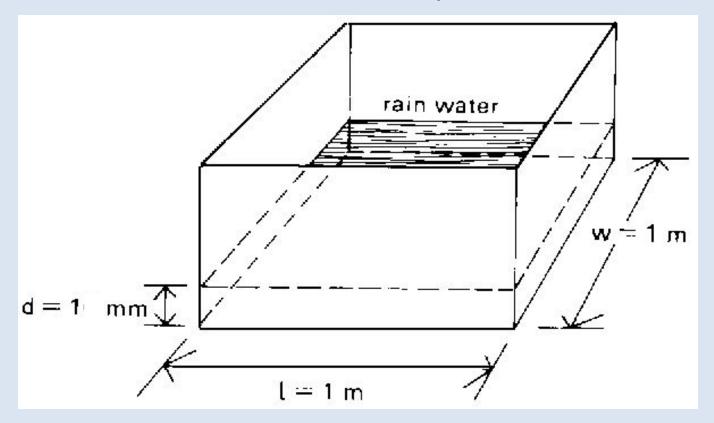

Maximum Temperature in Feb 2023 in India was 1.7 degC greater than normal

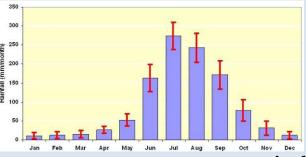
India Meteorological Depart- be more than last year. Southern hydromet and agromet advisory

ment on Tuesday signalled peninsula and most of Maha-services of IMD, said though the

Projections of summer heatwaves over India

Mid-century projections under RCP4.5 relative to 1976 – 2005 (all India average).




CLIMATE DATA

1 mm rain means

~ 1 liter of rain water in 1 square meter

Volume = $1m \times 1m \times 0.001m = 0.001 \text{ m}^3 \text{ or } 1 \text{ liter}$

Summer Monsoon Rainfall received = 850 mm

That's about 2 million (20 lakh) liters of water per person

The math:

person

Area = 3 trillion m²
Rain = 850 mm
Volume= 2700 trillion liters

Population = 1.3 billion
Per capita water = 2,000,000
liters
= 2 million liters of water per

RAINFALL | Classifications

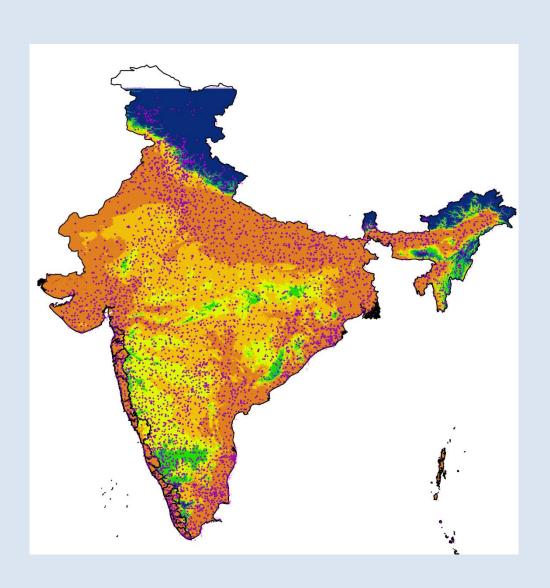
Description term used	Rainfall amount (mm/day)
Very light rain (VLR)	0.1-2.4
Light rain (LR)	2.5-7.5
Moderate rain (MR)	7.6–35.5
Rather heavy rain (RHR)	35.6–64.4
Heavy rain (HR)	64.5–124.4
Very heavy rain (VHR)	124.5-244.4
Extremely heavy rain (EHR)	> 244.5

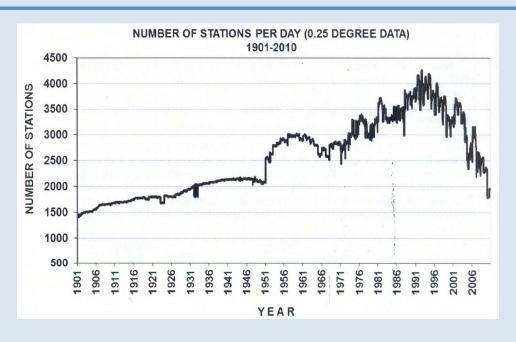
Mahabaleshwar Rains

19/07/2021 098 mm 20/07/2021 110 mm

21/07/2021 164 mm

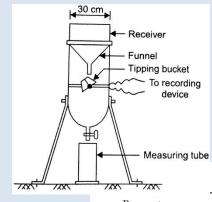
22/07/2021 480 mm


23/07/2021 600 mm

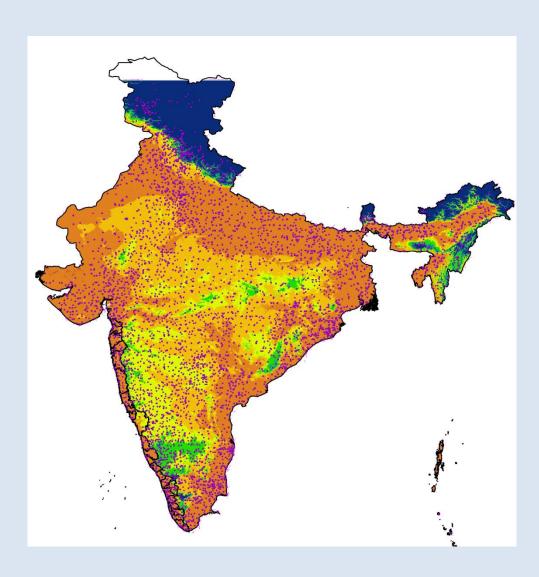

1080 mm in two days

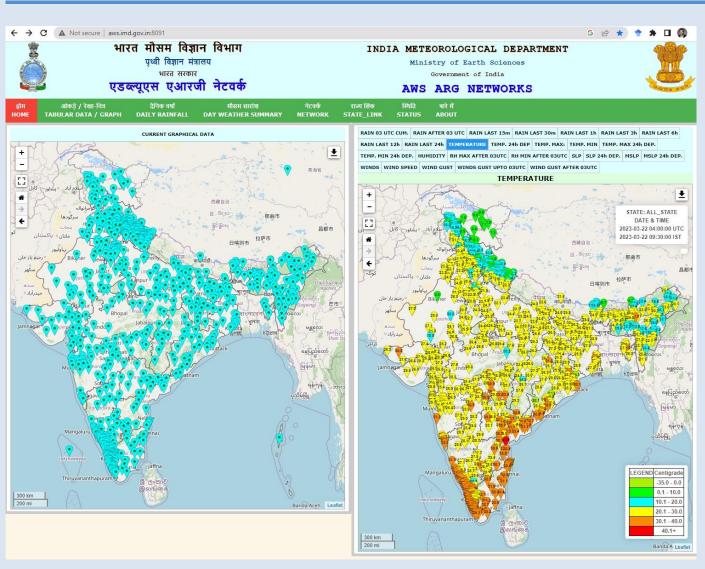
2600 rain gauge stations on an average 6955 varying stations over the period

547 are IMD observatory stations494 are Hydro-Meteorologyobservatories74 are Agromet observatories

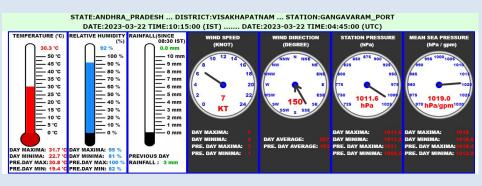

Remaining are rainfall reporting

RAINFALL DATA | Rain Gauge Stations



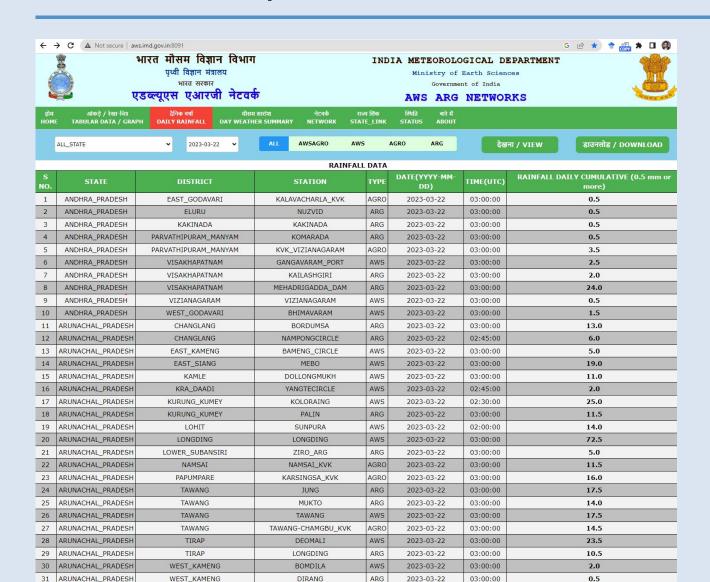

AWS	sensor	details	and	charac	teristics

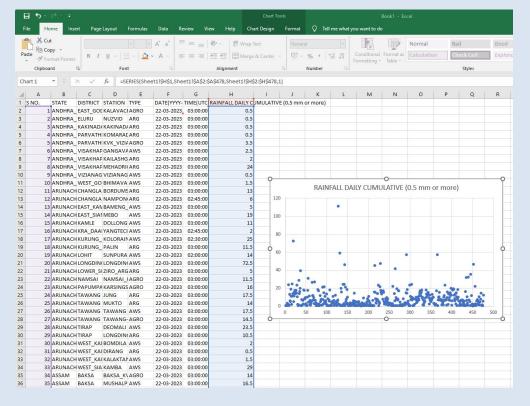
/XX\ ' /XX\				
Parameter	Type and Make	Height	Accuracy	Range & Resolution
Air temperature	Thermistor (Sutron make)	2 m	± 0.2 °C	- 40 °C to + 60 °C, Resolution: 0.1 °C
Relative humidity	Capacitive type (Sutron make)	2 m	$\pm\ 3\%$	0% to 100%, Resolution: 1%
Atmospheric pressure	Accubar solid state (Sutron make)	1.5 m	0.2 hPa	600-1100 hPa (100 hPa above datum value), Resolution: 0.1 hPa
Rainfall	Tipping Bucket (Sutron make)	0.6 to 1 m	2% at 240 mm/hr	Resolution: 0.5 mm
Wind speed	Ultrasonic (Gill Instruments)	10 m	1.2 m/s	0-60 m/s Resolution: 0.1 m/s
Wind direction	Ultrasonie (Gill Instruments)	10 m	1°	0° - 360° Resolution: 1°
Global solar radiation	Silicon photo-diode Licor-200SZ	2 m	5% against Eppley lab	0.3 - 4 μm
Soil temperature	Campbell Scientific	-20 cm	±0.4 °C	- 40 °C to + 50 °C Resolution: 0.1 °C
Soil moisture	Stevens Hydra Probe	-20 cm	± 0.03 wfv	0 to 0.45 wfv Resolution: 0.01 wfv



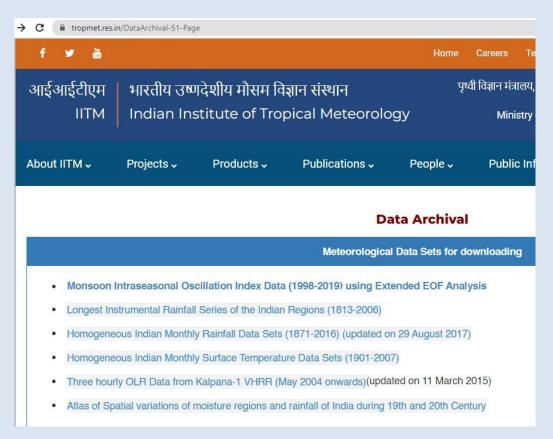
RAINFALL DATA | IMD Automatic Weather Stations

AWS: Automatic Weather Station ARG: Automatic Rain Gauge


Link: http://aws.imd.gov.in:8091


RAINFALL DATA | IMD Automatic Weather Stations

CLIMATE DATA

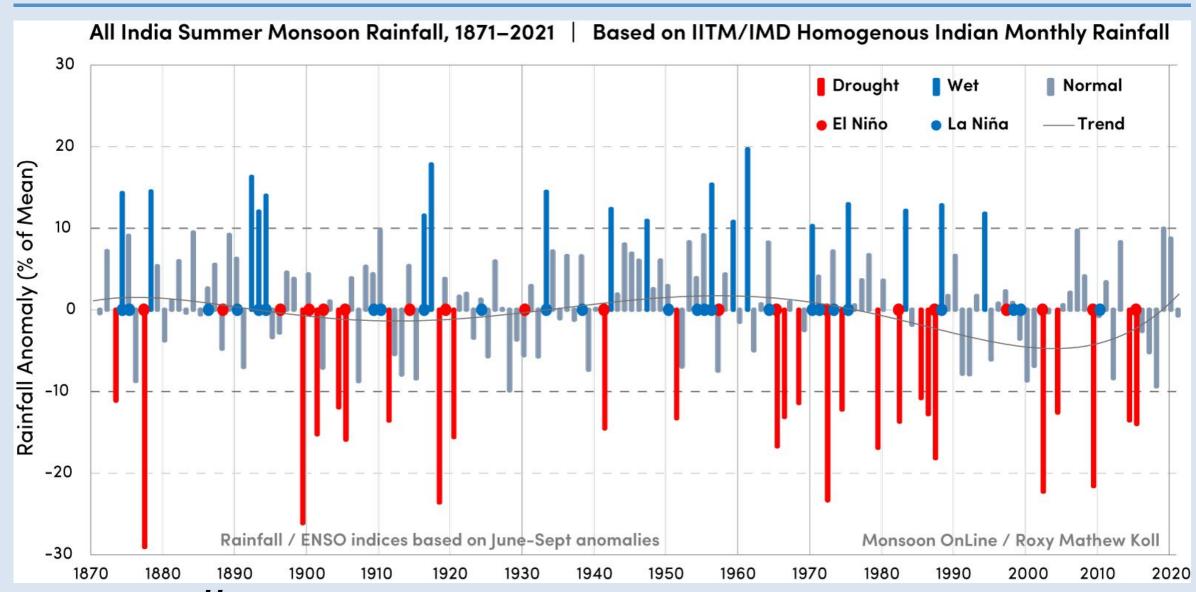


RAINFALL DATA | All India Rainfall

CLIMATE DATA

Link: https://www.tropmet.res.in Public Info > Data Archival

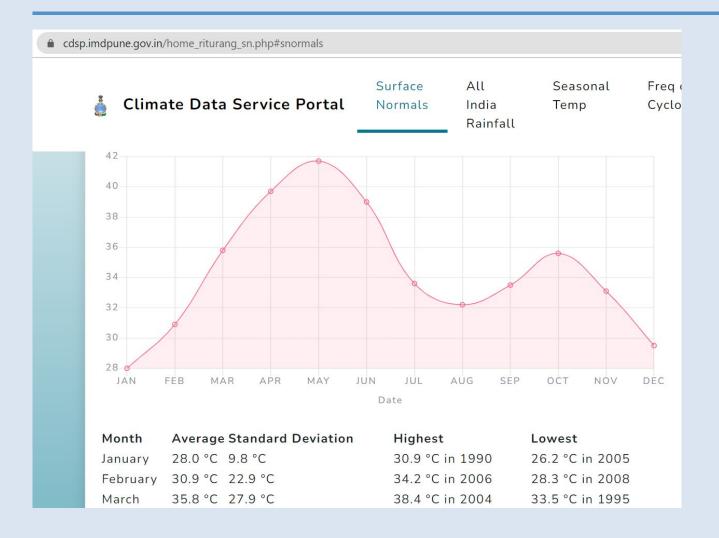
Table 1: ALL-INDIA RAINFALL (1871-2016) 30 SUBDIVISIONS, AREA 2880324 SQ.KM.


Monthly, Seasonal and Annual rainfall (in 10th of mm) 1871-2016 (1871-2013 based on 306 stations and 2014-2016 based on IMD Subdivisional rainfall)

year	JAN E	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	JF	MAM	JJAS	OND	ANN
1871	196 1	107	145	339	636	2080	2778	1794	1836	368	324	67	303	1120	8487	758	10670
1872	76	75	73	240	438	1892	2913	2452	1879	785	276	191	151	751	9136	1252	11289
1873	37 1	135	150	243	428	1130	2645	2142	1656	607	115	90	172	821	7573	812	9378
1874	86 1	158	107	169	683	2279	3069	2335	2062	932	187	40	244	959	9745	1159	12106
1875	99 1	114	131	232	506	1926	3079	2187	2105	566	63	71	213	869	9297	700	11078
1876	9	21	160	165	425	1233	2968	1956	1620	464	95	25	30	750	7776	584	9141
1877	291 2	234	240	353	674	1424	1564	1569	1483	1078	189	365	525	1267	6040	1632	9464
1878	108	91	102	361	665	1304	2940	3393	2124	798	273			1128	9761	1211	12299
1879	21 1	107	80	82	877	1900	2241	3221	1616	866	205	71	127	1039	8978	1142	11287
1880	39 1	165	151	211	496	1876	2717	1768	1840	877	528	111	204	858	8201	1516	10779
1881	13	32	331	237	531	1607	2927	2646	1433	493	347	62	45	1099	8613	902	10658
1882	100	94	90	188	596	2130	3311	1903	1685	739	596	62	194	873	9029	1397	11493
1883	179	36	189	165	621	2043	2690	1879	1881	830	282	155	215	975	8492	1267	10949
1884	71	74	82	203	383	1593	2924	2426	2385	866	270	305	145	668	9328	1441	11582
1885	96	99	136	199	528	1940	2728	2479	1327	737	321	502	195	863	8474	1560	11092
1886	49	12	222	124	711	1977	3159	2218	1390	1320	214	171	61	1057	8744	1705	11567
1887	176	6	148	209	552	1898	3013	2574	1508	879	411	130	182	909	8993		11503
1888	197 1	136	119	259	531	1323	2743	2800	1250	382	531	72	333	908	8116	985	10342
1889	106 1	134	66	243	448	2035	2797	2781	1693	940	254	68	240	757	9306	1262	11565
1890	26	11	173	261	358	2279	3009	2141	1626	647	351	136	37	792	9055	1134	11017
1891	115 1	134	348	207	595	834	2571	2297	2222	602	173	71	249	1150	7924	846	10169
1892	53 1	106	56	329	541	1579	3139	3063	2135	993	126	70	159	926	9916	1189	12190
1893	224 2	283	467	252	946	2416	2568	2309	2256	970	642			1665	9549	1634	13354
1894	115 1	144	181	248	360	2168	3114	2415	2017	1388	385	137	259	789	9714	1910	12672
1895	109	77	118	376	415	1982	2567	2299	1388	793	134	119	185	908	8236	1046	10377
1896	31	61	68	170	412	2034	2845	2633	773	149	435	175	92	650	8284	759	9786
1897	92 1	124	208	216	435	1426	2599	2905	1981	856	130	18	215	859	8911	1004	10990
1898	21 3	307	28	211	375	1717	2929	2208	1992	655	393	125	328	614	8846	1173	10961
1899	58	66	74	522	526	1951	1878	1441	1020	507	41	26	124	1122	6290	574	8109
1900	153	67	103	385	406	1287	2521	2713	2372	490	104	141	220	893	8893	735	10742
1901	274 3	337	113	316	391	1149	2225	2590	1256	540	431	95	611	820	7220	1066	9717
1902	67	25	102	354	418	1038	2796	1972	2112	697	278	269	92	874	7918	1244	10128
1903	85	55	102	121	562	1269	2789	2593	1957	1288	434	152	140	785	8608	1874	11407
1904	59	86	203	311	686	1795	2476	1970	1262	707	90	99	145	1200	7503	896	9744
1905	128 1	144	286	271	476	908	2456	2052	1748	610	98	25	272	1033	7164	733	9202
1906	151 3	385	220	135	328	1818	2875	2418	1738	544	199	264	536	683	8849	1007	11075
1907	63 3	324	256	523	264	1541	2217	3014	1003	205	238	128	387	1043	7774	571	9775

CLIMATE DATA

Link: https://mol.tropmet.res.in


CLIMATE DATA | Climatology / Normal / Average

51.6

119.3

200.9

Link: https://cdsp.imdpune.gov.in

59.2

73.2

109.0

165.2

282.8

117.0 292.0 271.7

263.1

92.3 254.9 201.4 180.0

100

entries

1902

1903

\$

31.1 17.2

32.2 32.9

24.9 20.9 42.3 33.7 54.5

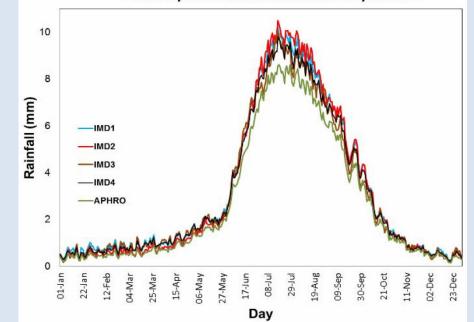
RAINFALL DATA | Gridded Rainfall Data

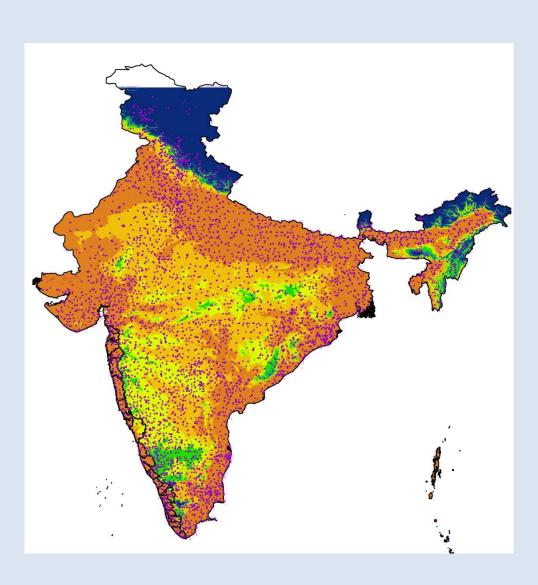
CLIMATE DATA

MAUSAM, 65, 1 (January 2014), 1-18

551.501.777

Development of a new high spatial resolution (0.25° × 0.25°) long period (1901-2010) daily gridded rainfall data set over India and its comparison with existing data sets over the region

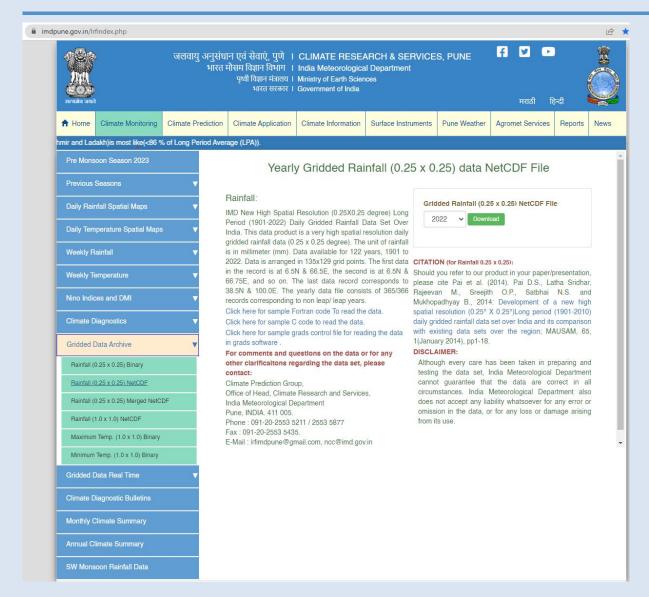

D. S. PAI, LATHA SRIDHAR, M. RAJEEVAN*, O. P. SREEJITH, N. S. SATBHAI and B. MUKHOPADHYAY


India Meteorological Department, Pune, India

*Earth System Science Organization, Ministry of Earth Sciences, New Delhi, India

Data set	Short name used in this study	Spatial resolution latitude × longitude	Data period	Rain gauge network used for preparing the gridded data	Interpolation method
IMD (Rajeevan et al., 2006 & 2010)	IMD1	1° × 1°	1951-2007	fixed network of 2140 rain gauge stations	Shepard (1968)
IMD (Rajeevan <i>et al.</i> , 2008)	IMD2	$1^{\circ} \times 1^{\circ}$	1901-2004	fixed network of 1380 rain gauge stations	Shepard (1968)
IMD (Rajeevan et al., 2009)	IMD3	$0.5^{\circ} \times 0.5^{\circ}$	1971-2005	varying network of 6076 rain gauge stations	Shepard (1968)
APHRODITE (Yatagai <i>et al.</i> , 2012)	APHRO	$0.25^{\circ} \times 0.25^{\circ}$	1951-2007	varying network of rain gauge stations	Willmott et al. (1985)
Present Study	IMD4	$0.25^{\circ} \times 0.25^{\circ}$	1901-2010	varying network of 6955	Shepard (1968)

Annual Cycle of the All India Mean Daily Rainfall



CLIMATE DATA | Gridded Datasets

CLIMATE DATA

Journal of the Meteorological Society of Japan, Vol. 87A, pp. 265–279, 2009 DOI:10.2151/jmsj.87A.265

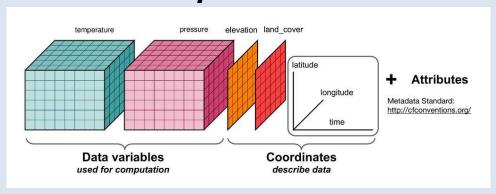
265

Daily Indian Precipitation Analysis Formed from a Merge of Rain-Gauge Data with the TRMM TMPA Satellite-Derived Rainfall Estimates

A. K. MITRA, A. K. BOHRA

National Centre for Medium Range Weather Forecasting (NCMRWF), Noida, India

M. N. RAJEEVAN

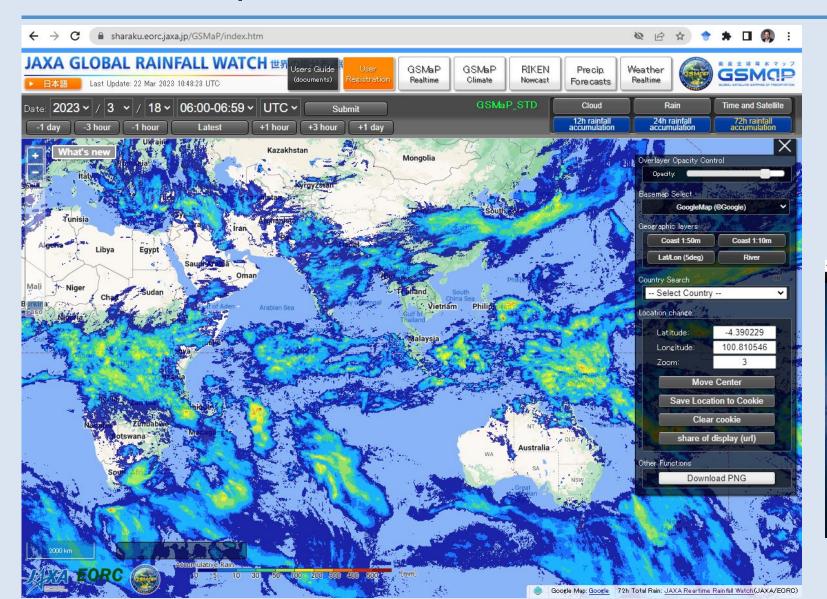

National Atmospheric Research Laboratory, Tirupati, India

and

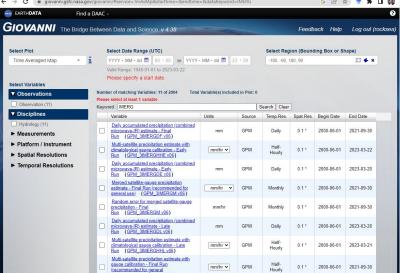
T. N. KRISHNAMURTI

Department of Meteorology, FSU, Tallahassee, Florida, USA
(Manuscript received 16 July 2008, in final form 16 December 2008)

Gridded Data / netCDF


Link: https://imdpune.gov.in

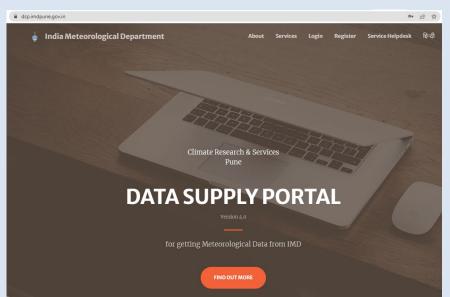
CLIMATE DATA | Satellite Data



CLIMATE DATA

Data Plot / Download

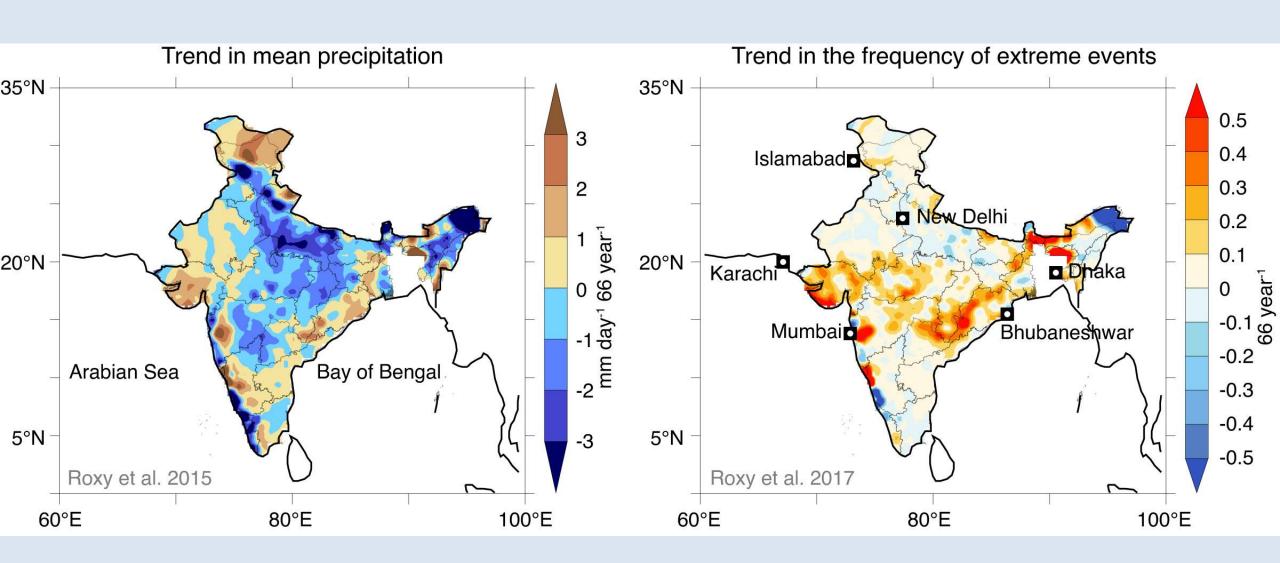
https://gpm.nasa.gov/data/imer


Link: https://sharaku.eorc.jaxa.jp/GSMaP/

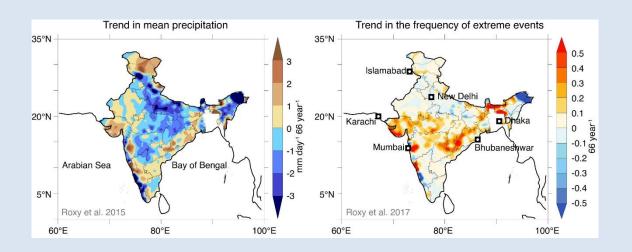
CLIMATE DATA | Station Data

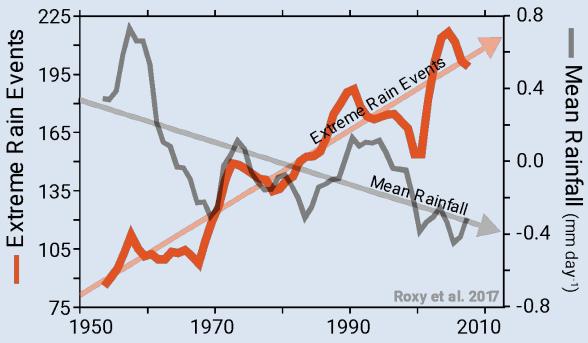
CLIMATE DATA

Link: https://dsp.imdpune.gov.in


	nali ○ Agromet ○ Autographic ○ Upper Pollution ○ Astronomical	r Air (PB) O Upper Air (RS) O	Upper Air (RW) O Radiation
Parameters			
Synoptic Hour :	reature, Maximum Temperature, Rainfall, Sunshine Duratio oo UTC	□ 12 UTC □ 15 UTC □ 18 UT	
Frequency	Period		Method
Daily Monthly	Year: 2000 - 2023 In Months: ☑ Jan ☑ Feb ☑ M	n case of single year, enter same year in b Mar Apr May Jun ep Oct Nov Dec	@ Chate
Daily Monthly	Year: 2000 - 2023 In Months: ☑ Jan ☑ Feb ☑ M	Mar 🛮 Apr 🗖 May 🗖 Jun	ooth the fields State Distri
Monthly Region or Station Check State and then Cli	Year: 2000 - 2023 In Months: Jan Feb N All All Aug S ck 'Add' to list the Stations below	Mar ☑ Apr ☑ May ☑ Jun ep ☑ Oct ☑ Nov ☑ Dec	onth the fields State Distri
Daily Monthly Region or Station Check State and then Cli ANDHRA PRADES	Year: 2000 - 2023 In Months: Jan Feb N All Jul Aug S ck' Add' to list the Stations below H ARUNACHAL PRADESH	Mar ☑ Apr ☑ May ☑ Jun epe ☑ Oct ☑ Nov ☑ Dec ☐ ASSAM	• State • Distri • Statio
Daily Monthly Region or Station Check state and then Cli ANDHRA PRADES CHHATTISGARH	Year: 2000 - 2023 In Months: If I I I I I I I I I I I I I I I I I I	Mar	oth the fields State District Station Station BiHAR GUJARAT
Daily Monthly Region or Station Check state and then Cli ANDHRA PRADES CHHATTISGARH HARYANA	Year: 2000 - 2023 In Months: If Jan I Feb I M All Jul Aug I S ck 'Add' to list the Stations below H ARUNACHAL PRADESH DELHI HIMACHAL PRADESH	Mar Apr May Jun ep Oct Nov Dec ASSAM GOA ISLANDS	onth the fields State District Station Station BIHAR GUJARAT JAMMU AND KASHMIR
Daily Monthly Region or Station Check State and then Clib ANDHRA PRADES CHHATTISGARH HARYANA JHARKHAND	Year: 2000 - 2023 In Months: I Jan I Feb I N All Jul Aug I S ck'Add' to list the Stations below H ARUNACHAL PRADESH DELHI HIMACHAL PRADESH KARNATAKA	Mar Apr May Jun ep Oct Nov Dec ASSAM GOA ISLANDS KERALA	onth the fields State District Static Static Static Static Static MADHYA PRADESH
Daily Monthly Region or Station Check State and then Clib ANDHRA PRADES CHHATTISGARH HARYANA JHARKHAND MAHARASHTRA	Year: 2000 - 2023 In Months: If Jan If Feb In All Jul Aug Is ck Add to list the Stations below H ARUNACHAL PRADESH DELHI HIMACHAL PRADESH KARNATAKA MANIPUR	Mar Apr May Jun ep Oct Nov Dec ASSAM GOA ISLANDS KERALA MEGHALAYA	BIHAR GUJARAT JAMMU AND KASHMIR MADHYA PRADESH MIZORAM
Daily Monthly Region or Station	Year: 2000 - 2023 In Months: I Jan I Feb I N All Jul Aug I S ck'Add' to list the Stations below H ARUNACHAL PRADESH DELHI HIMACHAL PRADESH KARNATAKA	Mar Apr May Jun ep Oct Nov Dec ASSAM GOA ISLANDS KERALA	onth the fields State District Static Static Static Static Static MADHYA PRADESH

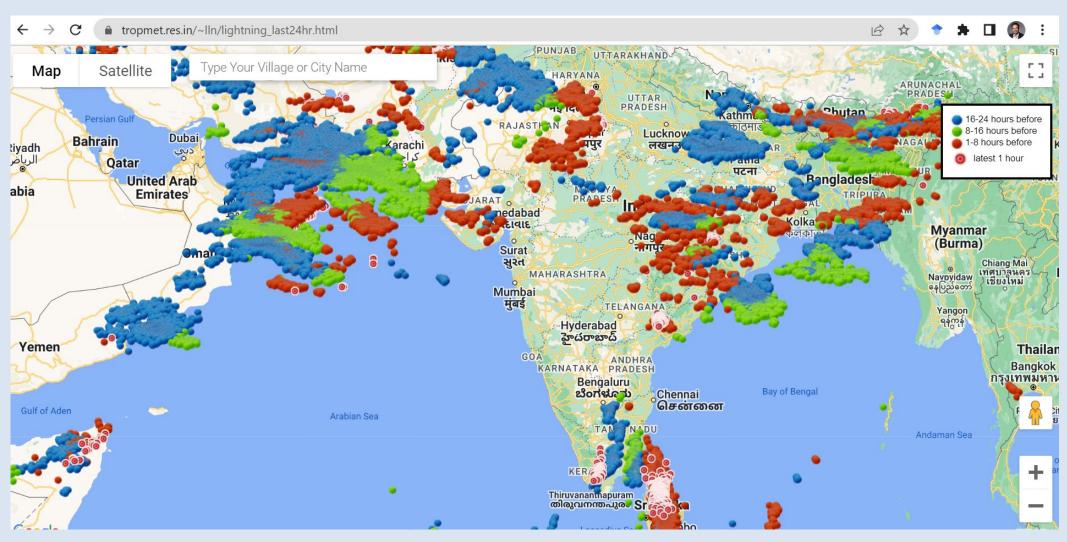
SI.	Date of Request	Enquiry No.	Data Type	Parameters	Frequency and Period	Records	Data Cost	Status	Action
1	21-03- 2023	NDCQ/2023/03/242	SURFACE	DAY SUMMARY Station List Availability File	DAILY From: 1990 To 2023 Months: ALL	11446	INR 84815 Waived Off = 84815	DATA AVAILABLE FOR DOWNLOAD.	Download Da
2	19-03- 2023	NDCQ/2023/03/225	RAINFALL	Station List Availability File	DAILY From: 2020 To 2023 Months: ALL	48	INR 2117 Waived Off = 2117	✓ DATA DOWNLOADED. ✓ REQUEST COMPLETE.	Download Da
3	27-02- 2023	NDCQ/2023/02/361	SURFACE	DAY SUMMARY Station List Availability File	DAILY From: 2020 To 2022 Months: ALL	10347	INR 76671 Waived Off = 76671	DATA DOWNLOADED. REQUEST COMPLETE.	Download Da
4	27-02- 2023	NDCQ/2023/02/358	SURFACE	DAY SUMMARY Station List Availability File	DAILY From: 2009 To 2023 Months: ALL	4462	INR 33063 Waived Off = 33063	✓ DATA DOWNLOADED. ✓ REQUEST COMPLETE.	Download Da
5	21-02- 2023	NDC0/2023/02/282	RAINFALL	Station List Availability File	DAILY From: 2020 To 2022 Months: ALL	192	INR 8467 Waived Off = 8467	✓ DATA DOWNLOADED. ✓ REQUEST COMPLETE.	Download Da
6	19-01- 2023	NDCQ/2023/01/256	SURFACE	DAY SUMMARY Station List Availability File	DAILY From: 2020 To 2023 Months: ALL	10347	INR 76671 Waived Off = 76671	✓ DATA DOWNLOADED. ✓ REQUEST COMPLETE.	Download Da
7	27-09- 2022	NDCQ/2022/09/181	SURFACE	DAY SUMMARY Station List Availability File	DAILY From: 2000 To 2021 Months: ALL	7670	INR 56835 Waived Off = 56835	✓ DATA DOWNLOADED. ✓ REQUEST COMPLETE.	Download Da
8	26-09- 2022	NDCQ/2022/09/163	AGROMET	AGROMET (SM) Station List Availability	DAILY From: 2000 To 2021	7602	INR 64617 Waiyed	✓ DATA DOWNLOADED. ✓ REQUEST COMPLETE.	Download Da





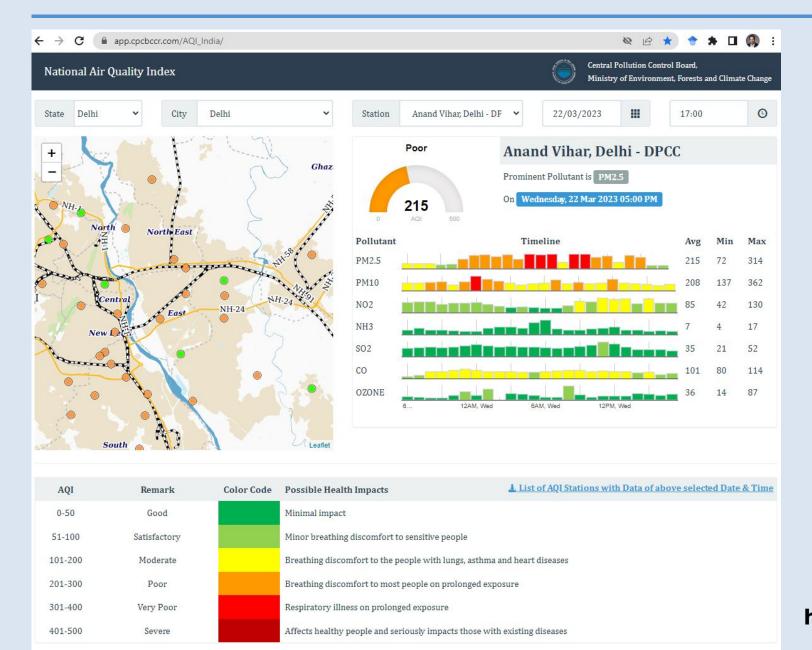
RAINFALL TRENDS | Droughts and Floods

While the total monsoon rainfall is decreasing, number of extreme rains (above 150 mm/day) are increasing

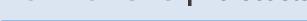


LIGHTNING | Air Quality Index

CLIMATE DATA


https://www.tropmet.res.in/~IIn/lightning_last24hr.html

AIR POLLUTION | Air Quality Index


https://app.cpcbccr.com/AQI_India/

FORECASTS | Forecasts

CLIMATE DATA

Ministry of Earth Sciences
Government of India

HOME DEPARTMENTAL WEBSITE ABOUT IMD PEOPLE PUBLICATIONS SOP SERVICES PRESS RELEASE

Warnings Subdivision

Nowcast

District Wise | Station |

(Multi Indian Languages)
Weather realized

Specialized Forecasts

All India Weather Forecast Bulletin | Download PDF

राष्ट्रीय मौसम पूर्वानुमान केन्द्र भारत मौसम विज्ञान विभाग पृथ्वी विज्ञान मंत्रालय

National Weather Forecasting Centre India Meteorological Department Ministry of Earth Sciences

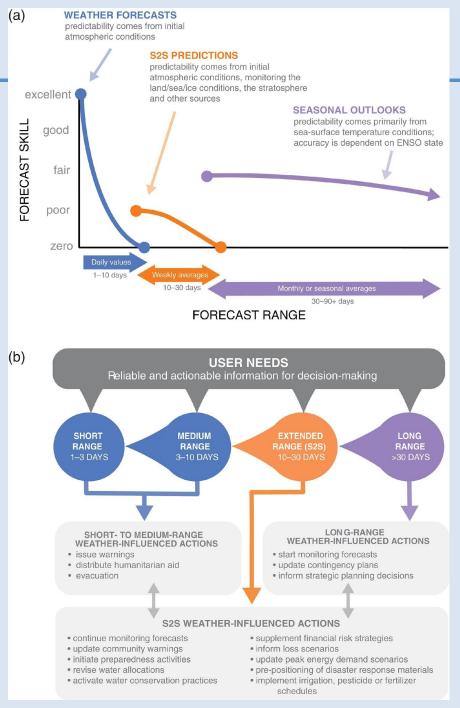
Wednesday 22 March 2023

<u>MID-DAY</u>

Time of Issue: 1345 hours IST

ALL INDIA WEATHER SUMMARY AND FORECAST BULLETIN

Significant Weather Features

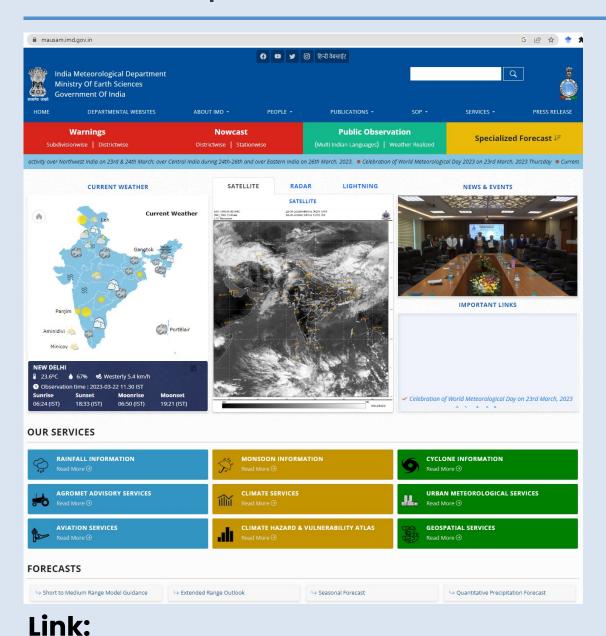

Weather Forecast & Warning:

- Northwest India: A Iresh spell of rainfall & thunderstorm activity is likely to commence over the region from evening of 23rd March with Isolated haltsorm likely over Himachal Pradesh, Uttarakhand, Punjab, Haryana, Chandigarh, West Uttar Pradesh and Rajasthan on 23rd & 24th March. Isolated heavy rainfall very likely over Himachal Pradesh, Uttarakhand and Punjab on on 24th March.
- Central India: Mainly dry weather likely over the region during next 2 days. Thereafter, a fresh spell of rainfall & thunderstorm/hailstorm activity is likely to commence over the region (Madhya Pradesh, Vidarbha & Chhattisgarh) during 24th-26th March.
- South India: Isolated light rainfall with thunderstorm & lightning likely over Tamilinadu, Puducherry & Karaikal on 22nd March and over Andhra Pradesh during next 5 days. A fresh spell of rainfall & thunderstorm activity is likely to commence over Telangana, Kerala & Mahe and interior Karnataka from 24th March.
- Northeast India: Scattered to fairly widespread light/moderate rainfall activity with thunderstorm, lightning & gusty winds likely to continue over Northeast India during next 2 days. Isolated heavy rainfall very likely over Arunachal Pradesh and Assam & Meghalaya on 22nd March.
- Fast India: Isolated to scattered rainfall with thunderstorm, lightning & gusty winds likely over East India on 22nd and decrease significantly thereafter. A fresh spell of rainfall & thunderstorm activity is likely to commence over the region from 26th March.

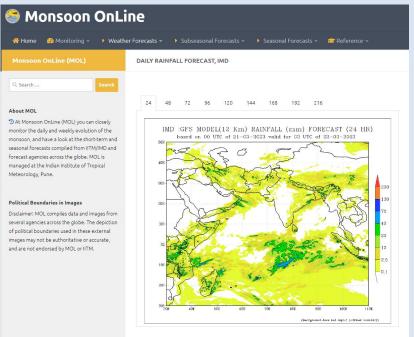
Main Weather Observations

- •Rainfall/thundershowers observed (from 0830 hours IST of yesterday to 0830 hours IST of today): at most places over Arunachal Pradesh, Assam & Meghalaya, Sub-Himalayam West Bengal & Sikkim, Ultarakhand; at many places over Nagaland, Manipur, Mizoram & Tripura, Gangetic West Bengal, Odisha, Jharkhand, East Uttar Pradesh, Chhattisgarh; at a few places over Bihar, West Uttar Pradesh, Himachal Pradesh, West Rajasthan and at isolated places over Jammu, Kashmir, Ladakh, Gilgit, Baltistan & Muzaffarabad, Haryana, Punjab, East Rajasthan, Madhya Pradesh, Vidarbha, Gujarat, Madhya Maharashira, Konkan & Goa, Andhra Pradesh, Telangama and Tamilnadu.
- Significant amount of rainfall recorded (from 0830 hours IST of yesterday to 0830 hours IST of today)(in cm): Arunachal Pradesh: Tuting (dist Upper Siang) 4; Assam & Meghalaya: Shella (dist East Khasi Hills) 9, Mawsynramı (dist East Khasi Hills) 7; Jharkhand: Hazarihagh, Koderma-5 each, Giriditi-4; Sub-Himalayan West Bengal & Sikkim: Sorth Sikkim-6; Odisha: Kendrapara, Ganjam-5 each, Gaipapti, Kalahandi-4 each; East Uttar Pradesh: Khori-6, Pratapgarh, Varanasi-6 each, Barabanki-4; Chhattisgarh: Masturi (dist Bilaspur) 4, Patharia (dist Mungeli) 4, Mungeli (dist Mungeli) 4; Coastal Andhra Pradesh & Yanam: Vepada (dist Vizlanagaram) 7, Gajapathinagaram (dist Vizlanagaram) 4, Ranastalam (dist Stikakulam) 4; Tamilnadu: Pennagaram: Ditarmapuri-9; Konkan: Pen (dist Raisard) 4.
- Hailstorm observed (from 0830 hours IST of yesterday to 0830 hours IST of today): at isolated places over East Uttar Pradesh, Chhattisgarh, Odisha,

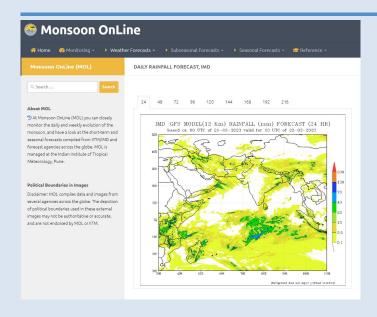
FORECASTS | Forecasts

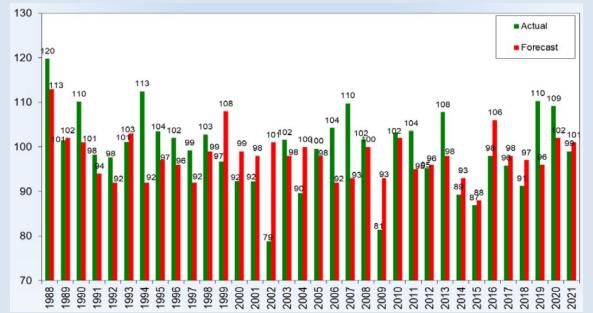

CLIMATE DATA

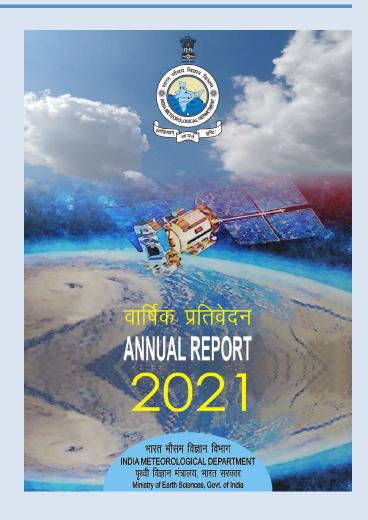
FORECASTS | Forecasts



CLIMATE DATA


Link: https://mol.tropmet.res.in


FORECASTS | Forecast Skill



CLIMATE DATA

FORECASTS | Heatwave Forecasts

CLIMATE DATA

Q. What is criterion for declaring heat wave?

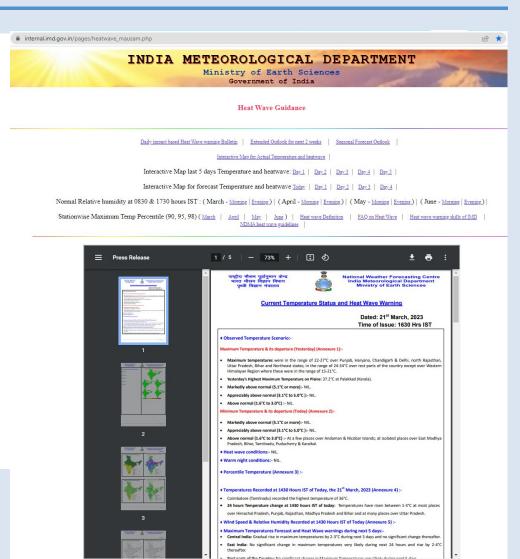
Heat wave is considered if maximum temperature of a station reaches at least 40°C or more for Plains and at least 30°C or more for Hilly regions.

a) Based on Departure from Normal

Heat Wave: Departure from normal is 4.5°C to 6.4°C

Severe Heat Wave: Departure from normal is >6.4°C

b) Based on Actual Maximum Temperature


Heat Wave: When actual maximum temperature $\geq 45^{\circ}$ C

Severe Heat Wave: When actual maximum temperature ≥47°C

If above criteria met at least in 2 stations in a Meteorological sub-division for at least two consecutive days and it declared on the second day.

Q. What is a criterion for describing Heat Wave for coastal stations?

When maximum temperature departure is 4.5°C or more from normal, *Heat Wave* may be described provided actual maximum temperature is 37°C or more.

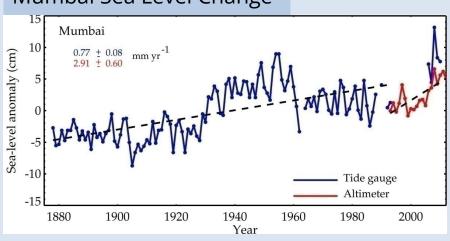
Link: https://internal.imd.gov.in/pages/heatwave_mausam.ph

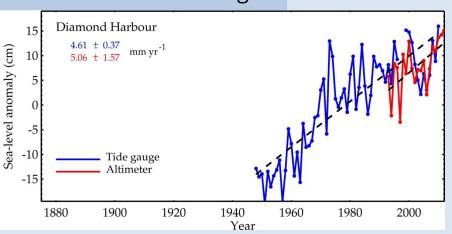
CLIMATE CHANGE | Sea Level Rise

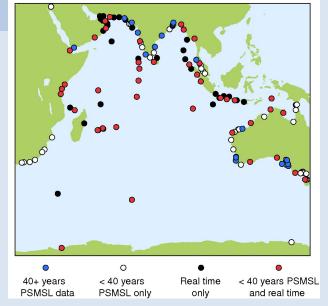
CLIMATE DATA

Primary school on Sagar Island in the Sundarbans in January 2014 | Nagraj Adve

The same school four years later in November 2017, submerged by the rising waters of the Bay of Bengal | Utpal Giri


CLIMATE CHANGE | Sea Level Rise




Mumbai Sea Level Change

Kolkata Sea Level Change

Tide gauges

Link: https://psmsl.org/data/obtaining

CLIMATE DATA

The gently sloping area adjoining the coast, the continental shelf, has an average downward slope of about 0.1°.

A 3 cm rise for a slope of 0.1° would take away 17 meters of land.

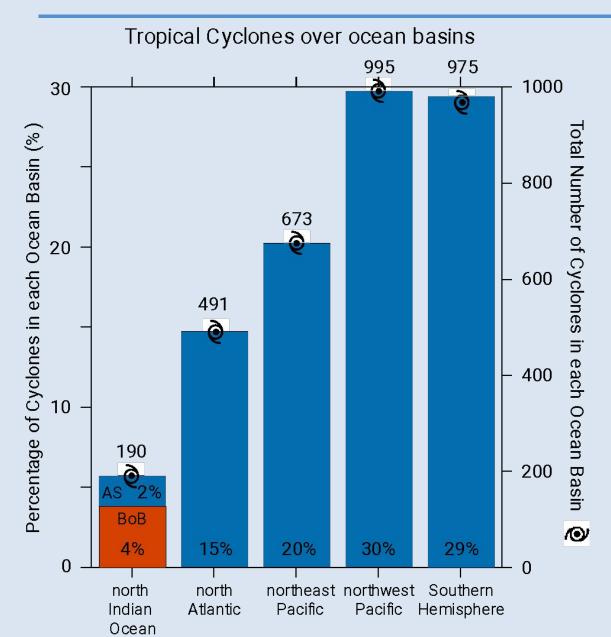
The trigonometry:

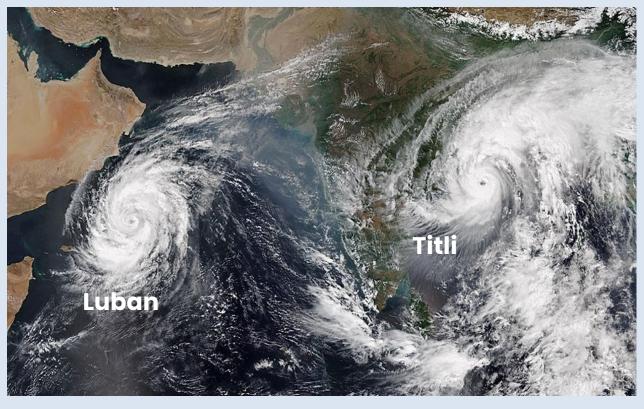
Land intrusion

- = sea level rise / tan(slope)
- $= 3 cm / tan(0.1^{\circ})$
- = 1700 cm

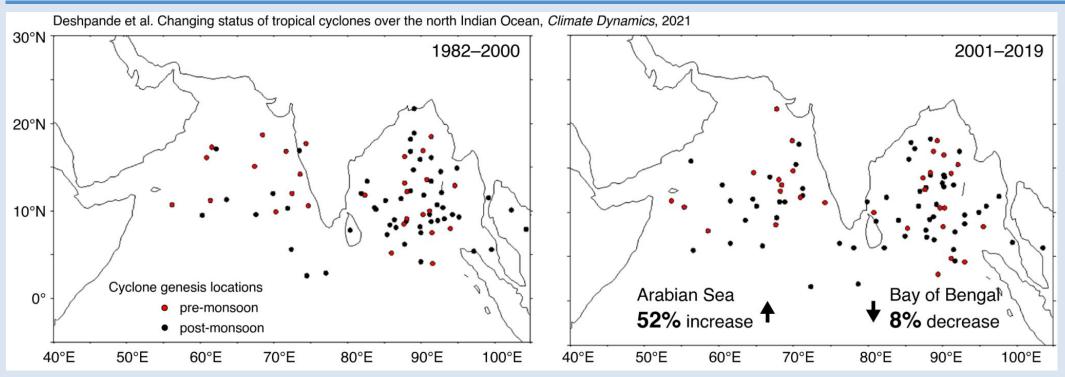
Bramble Cay Melomy is the first species to be extinct due to anthropogenic climate change.

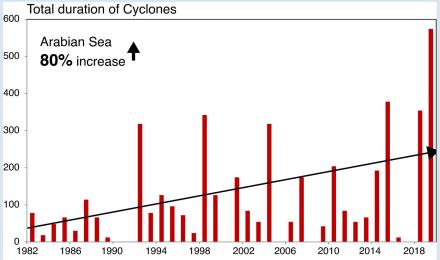
Sea level rise inundated the east Indian Ocean island where they lived.



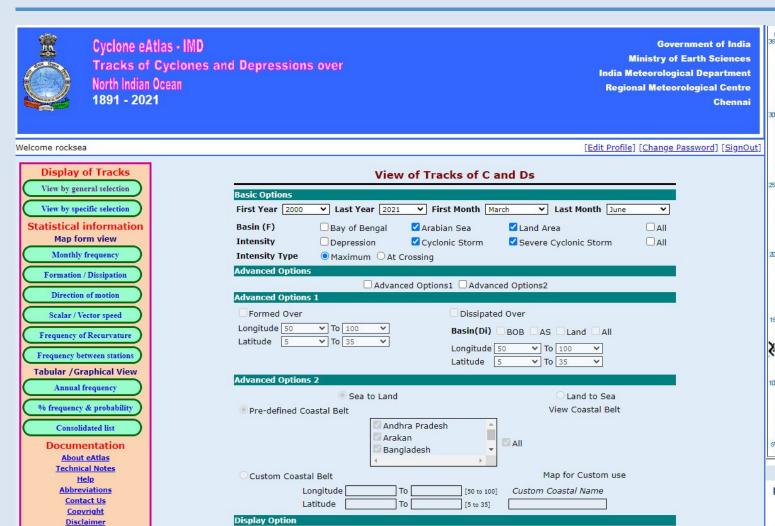


Cyclones derive their energy from the warm waters of the ocean.


Arabian Sea and Bay of Bengal together contributes to only 6% of global cyclones, but 80% of fatalities.


CLIMATE CHANGE | Cyclones

CLIMATE DATA



CYCLONES | Cyclone Data

CLIMATE DATA

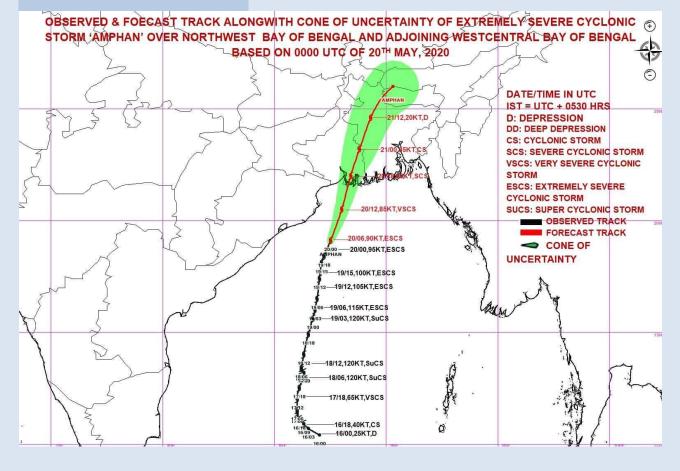
With Marking

View

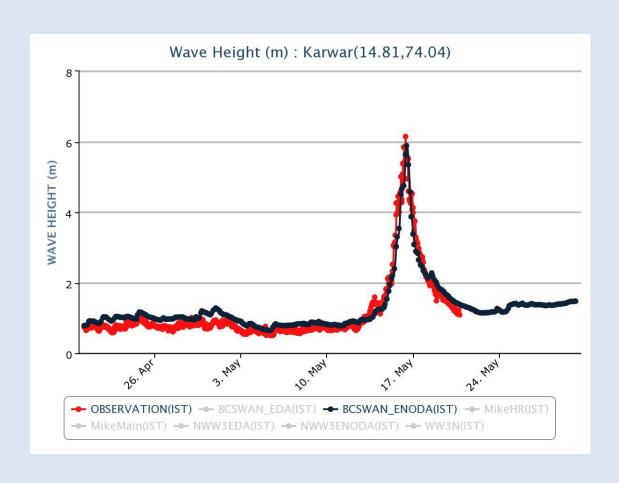
O Without Marking

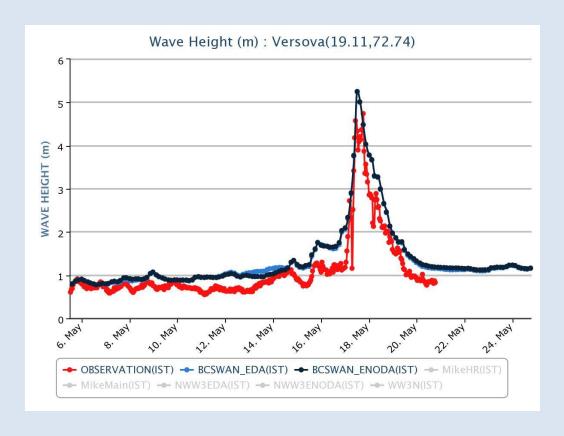
Reset

 Cyclone eAtlas - IMD DLH JOB Jun X Wey S MOS **200**€ R 2010-Ma@... 2018-May MNC **Arabian Sea Best Track** About Best Tracks Best Tracks Data (1982-2022) -- Year --Show all Attachment Tracks of Cyclones and Depressions for the period of Jan-Dec 2022

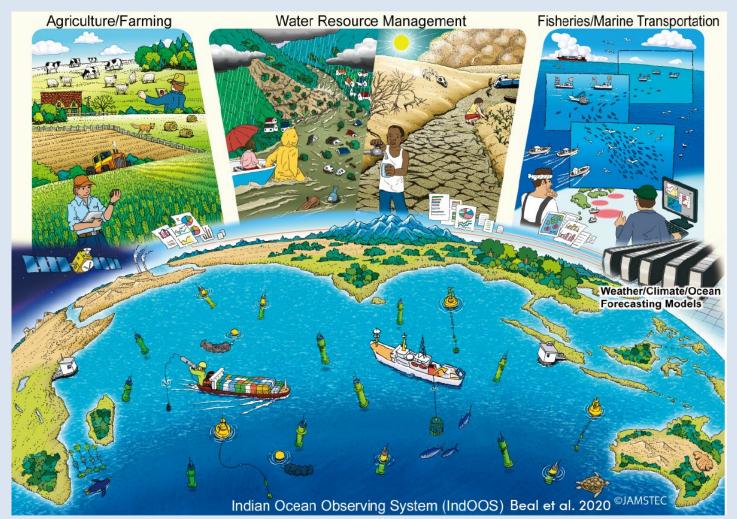

Link: https://rsmcnewdelhi.imd.gov.in

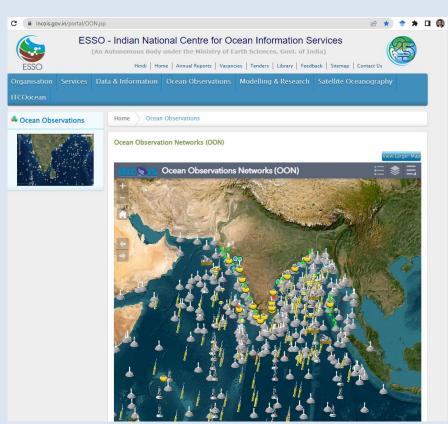
	Odisha Super Cyclone 1999	Phailin Very Super Cyclone, 2013	Amphan Super Cyclone, 2019
Loss of human life	10,000+	21	118
Ex-gratia by Govt @ Rs 6 Lakhs	Rs 593 Crores	Rs 1.26 Crores	
Area of evacuation	500 km (approx.)	180 km	


Cyclone AmphanTrack andForecast

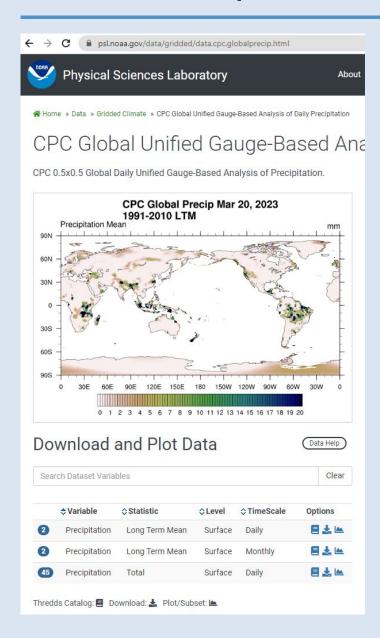


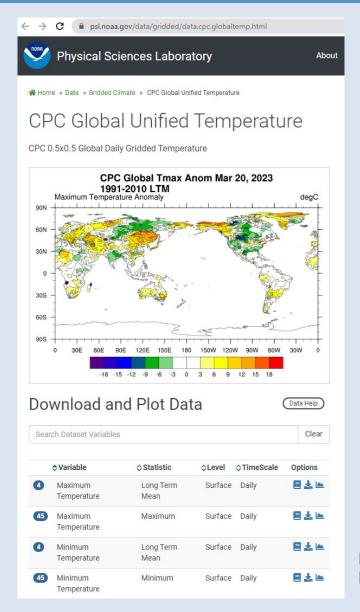
CLIMATE DATA

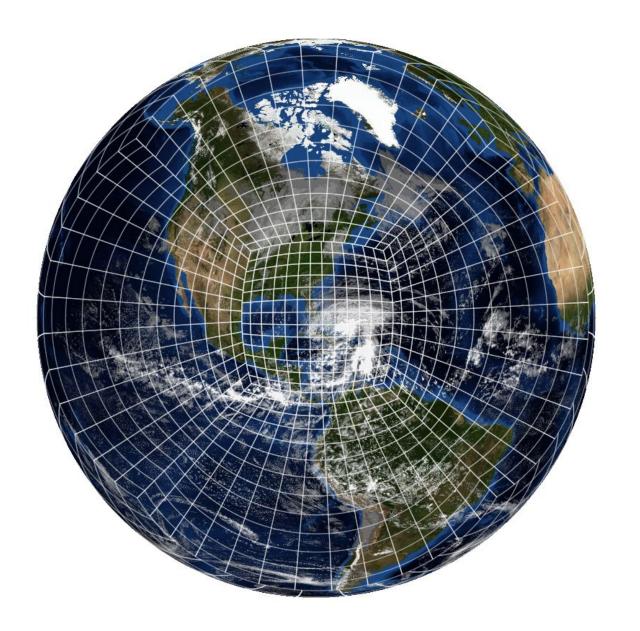



OCEAN DATA | Ocean Monitoring

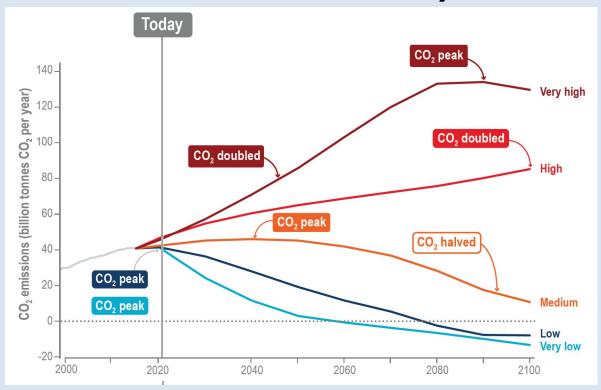
https://incois.gov.in/portal/OON.jsp

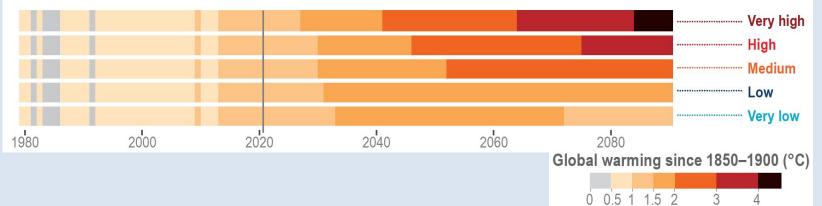

Link:


CLIMATE DATA | NOAA

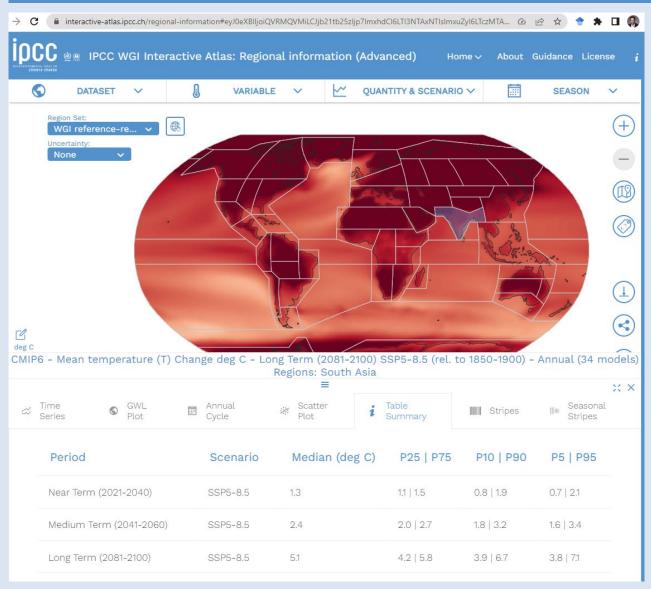


https://psl.noaa.gov/data/gridded/data.cpc.globalprecip.hthttps://psl.noaa.gov/data/gridded/data.cpc.globaltemp.htm

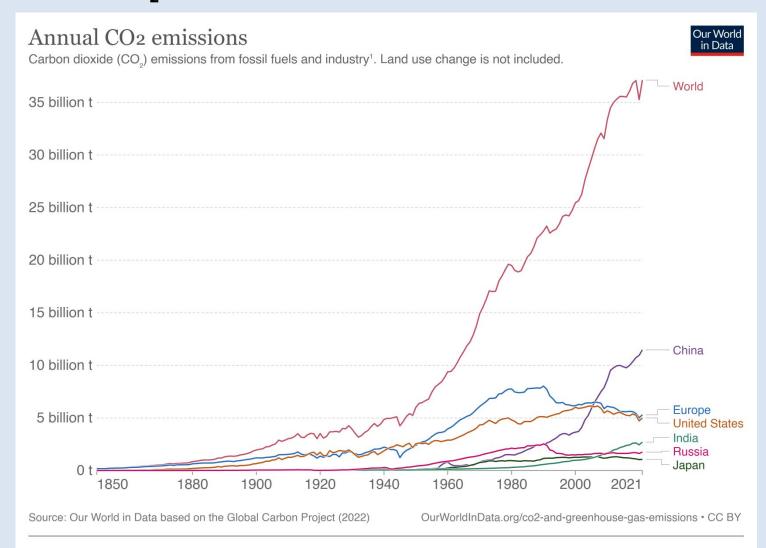




CLIMATE DATA


Shared Socioeconomic Pathways

CLIMATE CHANGE | Future Climate Projections


Link: https://interactive-atlas.ipcc.ch

CLIMATE CHANGE | Carbon Dioxide Emissions

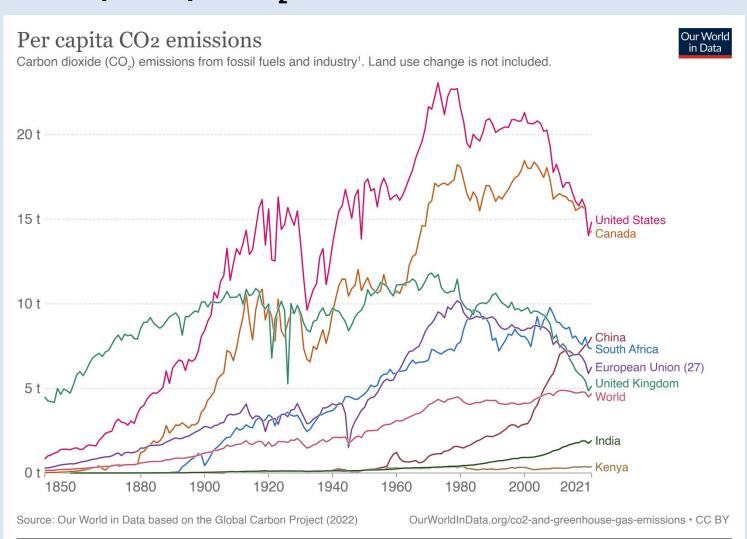
Annual CO₂ emissions

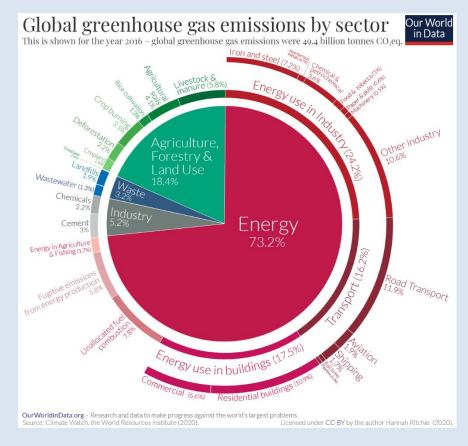
In 1950 the world emitted 6 billion tons of CO2.

Emissions have continued to grow rapidly; we now emit over 34 billion tons each year.

COVID: 2 billion tons dip, but not large enough to make a significant change.

https://ourworldindata.org/co2-emission

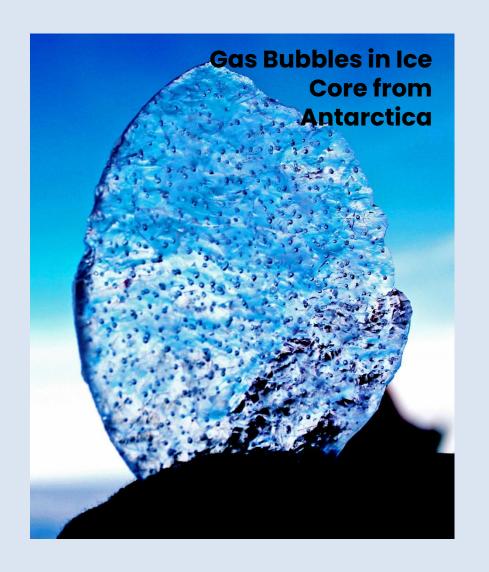

^{1.} Fossil emissions: Fossil emissions measure the quantity of carbon dioxide (CO₂) emitted from the burning of fossil fuels, and directly from industrial processes such as cement and steel production. Fossil CO₂ includes emissions from coal, oil, gas, flaring, cement, steel, and other industrial processes. Fossil emissions do not include land use change, deforestation, soils, or vegetation.



Annual per-capita CO, emissions

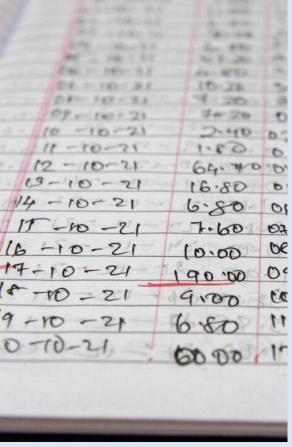
1. Fossil emissions: Fossil emissions measure the quantity of carbon dioxide (CO₂) emitted from the burning of fossil fuels, and directly from industrial processes such as cement and steel production. Fossil CO₂ includes emissions from coal, oil, gas, flaring, cement, steel, and other industrial processes. Fossil emissions do not include land use change, deforestation, soils, or vegetation.

Energy: electricity, heat and transport



CLIMATE DATA

How do we measure past atmospheric CO₂?


CLIMATE ACTION | Citizen Science Data

CLIMATE DATA

Book on rain data from budding weather folk

Student meteorologists observe World Water Day

Students of the St, Joseph's Upper Primary School, Malayinchippara, with their book of rainfall details of the Meenachil river basin. • VISHNU PRATAP

STAFF REPORTER

KOTTAYAM

It's always so much fun for kids to play outside in the rain. For this young bunch of amateur meteorologists, measuring these showers and assessing its impact on the local environment offers even more excitement.

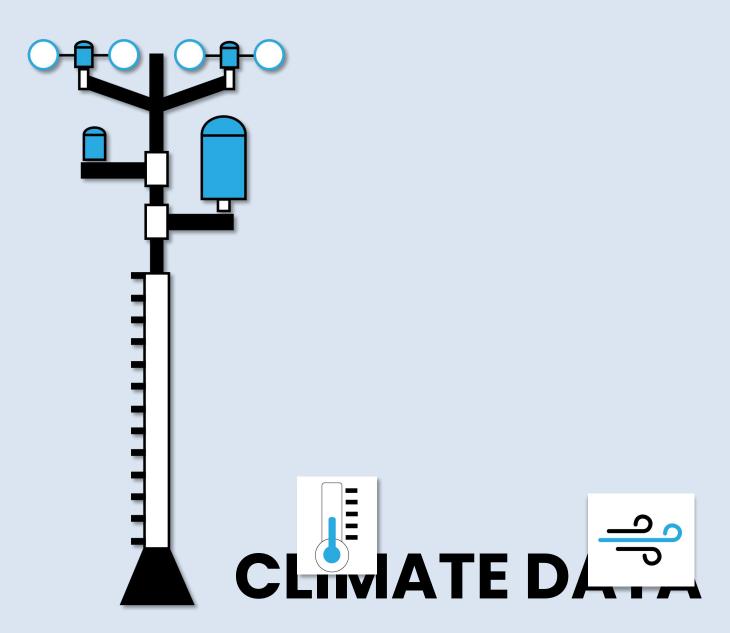
As the world celebrated World Water Day on Tuesday, a group of students from St. Joseph's Upper Primary School in Malayinchippara brought out a book on the local rainfall database of the Meenachil river basin. Eminent conservationist Madhav Gadgil released the book at an online function

details generally correlate with official measurements, while also helping one to understand the very localised nature of rainfall.

In his preface to the book, Roxy Mathew Koll, a climate scientist with the Indian Institute of Tropical Meteorology, Pune, said the initiative had taken the school closer towards being climateequipped.

Daily basis

"The school now monitors rainfall using rain gauges on a daily basis. This exercise helps the students and the flow monitoring sca community make sense of thermometer on the the rainfall and weather promises to more


Mr. Koll had also co training sessions for in rain-gauging and activities.

Climate Action Gr These kids, member school's Climate Group, are also assis Meenachil River Ra

toring Network rur

Meenachil River Pr

Council (MRPC), a c tionist collective. Commenting on t tive, Aby Immanue tary, MRPC, said pla also afoot to install

Roxy Mathew Koll Centre for Climate Change Research Indian Institute of Tropical Meteorology Ministry of Earth Sciences, India